

Cubically's Documentation

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

Quick guide

This quick guide will get you started with enough to write some code, but not enough to delve into the pain and terror of the language.

What is "Cubically"?

Cubically is an esoteric programming language [https://en.wikipedia.org/wiki/Esoteric_programming_language], meaning that it is intentionally difficult to program in.

Other esoteric languages may use a stack [https://en.wikipedia.org/wiki/Stack_(abstract_data_type)] or a tape [https://esolangs.org/wiki/Tape] to store data. Cubically, however, uses a built-in Rubik's Cube and three more memory locations with varying levels of read-write restrictions.

Cubically specializes in Rubik's Cubes, so almost all of its commands and functionalities are based around the memory cube. Some, such as XOR and LSHIFT, are really completely useless, but we decided they should be in the language. ¯_(ツ)_/¯

Syntax

Digits are arguments and non-digits are commands. A command can only be one letter long. (That rule, which you still need to know, is broken so many times it's not even funny.)

code: RL2UD23
does: R call command R without arguments
 L2 call command L with argument 2
 U call command U without arguments
 D23 call command D with argument 2, then argument 3 (NOT argument 23)

Cube commands

Any algorithm, or sequence of moves, in Singmaster's notation [https://proofwiki.org/wiki/Definition:Singmaster_Notation], is valid Cubically code.

Command	Description
R	rotate the right layer of the cube 90°

 clockwise|
|L|rotate the left layer of the cube 90°

 clockwise|
|U|rotate the top layer of the cube 90°

 clockwise|
|D|rotate the bottom layer of the cube 90°

 clockwise|
|F|rotate the front layer of the cube 90°

 clockwise|
|B|rotate the back layer of the cube 90°

 clockwise|

Call any of the above commands with the argument 2 for a 180°

 turn, and the argument ' or 3 for a counterclockwise turn.

Multiple sizes

Since v2.0 [https://github.com/aaronryank/Cubically/releases/tag/v2.0], Cubically has supported more than just a 3x3x3 for the memory cube. In the interpreter's command-line invocation, append an argument to specify the size: 4 for a 4x4x4 memory cube, or a 5 for a 5x5x5, etc.

But Singmaster's notation only defines moves for a 3x3x3 D: how can I turn the inner layers of a larger cube?

Unicode subscripts (₀₁₂₃₄₅₆₇₈₉), while breaking the "a command can only be one character long" rule, give you the ability to turn the inner layers. For example, R (performed on a solved 4x4x4) changes the cube's state to this:

 0002
 0002
 0002
 0002
1111222533330444
1111222533330444
1111222533330444
1111222533330444
 5554
 5554
 5554
 5554

However, performing R₁ on a solved 4x4x4 changes the cube's state to this:

 0020
 0020
 0020
 0020
1111225233334044
1111225233334044
1111225233334044
1111225233334044
 5545
 5545
 5545
 5545

R means "turn the right face 90°

 clockwise." So R₁ means "turn the layer 1 inwards from the right face 90°

 clockwise."

These can be pretty fun. Try running [https://tio.run/##Sy5NykxOzMmp/P8/KOhRU6M6kGgC4mYQo0UhNBQkBiSaQkFioSAxH3UfoCAQN4EYzUDcov7//39TAA] RR₁'R₂R₃'R₄ UU₁'U₂U₃'U₄ L'L₁L₂'L₃L₄' on a 5x5x5.

But how do I interact with the cube?

When I first made Cubically, with the memory cube alone and no other way to store data, it was nothing but a console emulator for a Rubik's Cube. However, I decided I wanted to turn it into an esoteric programming language, so I added one more piece of memory, the notepad. The value "written" on the notepad could be modified based on the different states of the cube. So I introduced the concept of memory locations. Memory location 0 would always store the sum of the top face of the cube (the face that's filled with 0s when the cube is unsolved). Memory location 1 would always store the sum of the left face, 2 stored the right face sum, etc.

Try scrambling up the cube and running :1 %6 - :1 to set the notepad to the sum of the left face, and %6 to print the notepad (memory location 6). What did it print? Try a different scramble with the same :1 %6 at the end. See what different values you can get!

For ease of use, Cubically automatically dumps the memory cube and the notepad at the end of the program. For example, after running the code R2L2U2D2F2B2, Cubically prints this:

Notepad: 0

 050
 505
 050
131242313424
313424131242
131242313424
 505
 050
 505

Cubically sounds fun, but how can I actually use it?

You can download the interpreter in the GitHub repo [https://git.io/Cubically]. You need GCC [https://www.gnu.org/software/gcc/] and Make [https://www.gnu.org/software/make/] installed.

You can also use the online interpreter [https://tio.run/##Sy5NykxOzMmp/P8/KOhRU6M6kGgC4mYQo0UhNBQkBiSaQkFioSAxH3UfoCAQN4EYzUDcov7//39TAA], thanks to Dennis [https://codegolf.stackexchange.com/users/12012/dennis] of Programming Puzzles and Code Golf, where you can find many fun Cubically programs [https://codegolf.stackexchange.com/search?q=cubically+is%3Aanswer] in friendly competition.

Who's responsible for this mess?

Most of Cubically, such as the interpreter and the documentation, was written by me, a.k.a. MD XF on the internet (PPCG [https://codegolf.stackexchange.com/users/61563/md-xf], GitHub [https://github.com/aaronryank]). Thanks to the members of the Cubically team - Kamil Drakari (PPCG [https://codegolf.stackexchange.com/users/71434/kamil-drakari], GitHub [https://github.com/drakari]) and TehPers (PPCG [https://codegolf.stackexchange.com/users/72489/tehpers], GitHub [https://github.com/TehPers]) for valuable contributions.

Index

Cubically's Documentation

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

Quick guide

This quick guide will get you started with enough to write some code, but not enough to delve into the pain and terror of the language.

What is "Cubically"?

Cubically is an esoteric programming language [https://en.wikipedia.org/wiki/Esoteric_programming_language], meaning that it is intentionally difficult to program in.

Other esoteric languages may use a stack [https://en.wikipedia.org/wiki/Stack_(abstract_data_type)] or a tape [https://esolangs.org/wiki/Tape] to store data. Cubically, however, uses a built-in Rubik's Cube and three more memory locations with varying levels of read-write restrictions.

Cubically specializes in Rubik's Cubes, so almost all of its commands and functionalities are based around the memory cube. Some, such as XOR and LSHIFT, are really completely useless, but we decided they should be in the language. ¯_(ツ)_/¯

Syntax

Digits are arguments and non-digits are commands. A command can only be one letter long. (That rule, which you still need to know, is broken so many times it's not even funny.)

code: RL2UD23
does: R call command R without arguments
 L2 call command L with argument 2
 U call command U without arguments
 D23 call command D with argument 2, then argument 3 (NOT argument 23)

Cube commands

Any algorithm, or sequence of moves, in Singmaster's notation [https://proofwiki.org/wiki/Definition:Singmaster_Notation], is valid Cubically code.

Command	Description
R	rotate the right layer of the cube 90°

 clockwise|
|L|rotate the left layer of the cube 90°

 clockwise|
|U|rotate the top layer of the cube 90°

 clockwise|
|D|rotate the bottom layer of the cube 90°

 clockwise|
|F|rotate the front layer of the cube 90°

 clockwise|
|B|rotate the back layer of the cube 90°

 clockwise|

Call any of the above commands with the argument 2 for a 180°

 turn, and the argument ' or 3 for a counterclockwise turn.

Multiple sizes

Since v2.0 [https://github.com/aaronryank/Cubically/releases/tag/v2.0], Cubically has supported more than just a 3x3x3 for the memory cube. In the interpreter's command-line invocation, append an argument to specify the size: 4 for a 4x4x4 memory cube, or a 5 for a 5x5x5, etc.

But Singmaster's notation only defines moves for a 3x3x3 D: how can I turn the inner layers of a larger cube?

Unicode subscripts (₀₁₂₃₄₅₆₇₈₉), while breaking the "a command can only be one character long" rule, give you the ability to turn the inner layers. For example, R (performed on a solved 4x4x4) changes the cube's state to this:

 0002
 0002
 0002
 0002
1111222533330444
1111222533330444
1111222533330444
1111222533330444
 5554
 5554
 5554
 5554

However, performing R₁ on a solved 4x4x4 changes the cube's state to this:

 0020
 0020
 0020
 0020
1111225233334044
1111225233334044
1111225233334044
1111225233334044
 5545
 5545
 5545
 5545

R means "turn the right face 90°

 clockwise." So R₁ means "turn the layer 1 inwards from the right face 90°

 clockwise."

These can be pretty fun. Try running [https://tio.run/##Sy5NykxOzMmp/P8/KOhRU6M6kGgC4mYQo0UhNBQkBiSaQkFioSAxH3UfoCAQN4EYzUDcov7//39TAA] RR₁'R₂R₃'R₄ UU₁'U₂U₃'U₄ L'L₁L₂'L₃L₄' on a 5x5x5.

But how do I interact with the cube?

When I first made Cubically, with the memory cube alone and no other way to store data, it was nothing but a console emulator for a Rubik's Cube. However, I decided I wanted to turn it into an esoteric programming language, so I added one more piece of memory, the notepad. The value "written" on the notepad could be modified based on the different states of the cube. So I introduced the concept of memory locations. Memory location 0 would always store the sum of the top face of the cube (the face that's filled with 0s when the cube is unsolved). Memory location 1 would always store the sum of the left face, 2 stored the right face sum, etc.

Try scrambling up the cube and running :1 %6 - :1 to set the notepad to the sum of the left face, and %6 to print the notepad (memory location 6). What did it print? Try a different scramble with the same :1 %6 at the end. See what different values you can get!

For ease of use, Cubically automatically dumps the memory cube and the notepad at the end of the program. For example, after running the code R2L2U2D2F2B2, Cubically prints this:

Notepad: 0

 050
 505
 050
131242313424
313424131242
131242313424
 505
 050
 505

Cubically sounds fun, but how can I actually use it?

You can download the interpreter in the GitHub repo [https://git.io/Cubically]. You need GCC [https://www.gnu.org/software/gcc/] and Make [https://www.gnu.org/software/make/] installed.

You can also use the online interpreter [https://tio.run/##Sy5NykxOzMmp/P8/KOhRU6M6kGgC4mYQo0UhNBQkBiSaQkFioSAxH3UfoCAQN4EYzUDcov7//39TAA], thanks to Dennis [https://codegolf.stackexchange.com/users/12012/dennis] of Programming Puzzles and Code Golf, where you can find many fun Cubically programs [https://codegolf.stackexchange.com/search?q=cubically+is%3Aanswer] in friendly competition.

Who's responsible for this mess?

Most of Cubically, such as the interpreter and the documentation, was written by me, a.k.a. MD XF on the internet (PPCG [https://codegolf.stackexchange.com/users/61563/md-xf], GitHub [https://github.com/aaronryank]). Thanks to the members of the Cubically team - Kamil Drakari (PPCG [https://codegolf.stackexchange.com/users/71434/kamil-drakari], GitHub [https://github.com/drakari]) and TehPers (PPCG [https://codegolf.stackexchange.com/users/72489/tehpers], GitHub [https://github.com/TehPers]) for valuable contributions.

Code page

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

Cubically uses a custom code page. This means that its commands can be considered to take one byte apiece, even though many of them are Unicode characters.

	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_C	_D	_E	_F
0_	⁰	¹	²	³	⁴	⁵	⁶	⁷	⁸	⁹	ಠ					
1_	₀	₁	₂	₃	₄	₅	₆	₇	₈	₉						
2_		!	"	#	$	%	&	'	()	*	+	,	-	.	/
3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4_	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
5_	P	Q	R	S	T	U	V	W	X	Y	Z	[\|]	^	_	
6_	`	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o
7_	p	q	r	s	t	u	v	w	x	y	z	{			}	~
8_	⊕															

|«

|»

|·

|⇒

| |¶

|■|▦|↬|↫|→|←|↔|||
|9_|𝟘

|𝟙

|𝟚

|𝟛

|𝟜

|𝟝

|𝟞

|𝟟

|𝟠

|𝟡

|𝕀

A_	Ṛ	Ḷ	Ụ	Ḍ	Ḟ	Ḅ	Ṃ	Ẹ	Ṣ							
B_	ṛ	ḷ	ụ	ḍ	ḟ	ḅ	ṃ	ẹ	ṣ							
C_	ⓐ	ⓑ	ⓒ	ⓓ	ⓔ	ⓕ	ⓖ	ⓗ	ⓘ	ⓙ	ⓚ	ⓛ	ⓜ	ⓝ	ⓞ	ⓟ
D_	ⓠ	ⓡ	ⓢ	ⓣ	ⓤ	ⓥ	ⓦ	ⓧ	ⓨ	ⓩ						
E_																
F_																

Commands

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

Below are tables containing Cubically's commands. You can find them all formatted in a simple table in the quick reference.

	Name - the short, capitalized name of the command

	Char - the character(s) in the source that call the command

	Arg n - what the command does when called with argument n

	Implicit - what the command does when called without arguments

Cube commands

Char	Name	Arg n	Implicit
R	RIGHT	rotate the right face 90°	

 clockwise n times|n = 1|
|L|LEFT|rotate the left face 90°

 clockwise n times|n = 1|
|U|UP|rotate the top face 90°

 clockwise n times|n = 1|
|D|DOWN|rotate the bottom face 90°

 clockwise n times|n = 1|
|F|FRONT|rotate the front face 90°

 clockwise n times|n = 1|
|B|BACK|rotate the back face 90°

 clockwise n times|n = 1|
|M|MID_L|rotate the middle layer inwards from the left face 90°

 clockwise n times|n = 1|
|E|MID_D|rotate the middle layer inwards from the bottom face 90°

 clockwise n times|n = 1|
|S|MID_F|rotate the middle layer inwards from the front face 90°

 clockwise n times|n = 1|

There are two things notable about cube commands:

	' is synonymous to 3 in source code.

	Commands can have subscripts and superscripts attached to them. For more information, see turning inner layers.

General

Char	Name	Arg n	Implicit		
&	EXIT	exit if the value of memory location n is nonzero	n = 6		
+	ADD	notepad += memory location n	n = 6		
-	SUB	notepad -= memory location n	n = 7		
*	MUL	notepad *= memory location n	n = 6		
/	DIV	notepad /= memory location n	n = 7		
_	MOD	notepad %= memory location n	n = 6		
^	POW	notepad **= memory location n	n = 6		
=	EQ	notepad = (notepad == memory location n)	n = 7		
<	LT	notepad = (notepad < memory location n)	n = 7		
>	GT	notepad = (notepad > memory location n)	n = 7		
⊕	XOR	notepad = (notepad ⊕ memory location n)	n = 6		
«	LSHIFT	notepad <<= memory location n	n = 6		
»	RSHIFT	notepad >>= memory location n	n = 6		
·	AND	notepad &= memory location n	n = 6		
		OR	notepad	= memory location n	n = 6
:	SET	notepad = memory location n	n = 7		

I/O

Char	Name	Arg n	Implicit
@	PUTCHAR	print memory location n as an ASCII character	n = 6
%	PRINT	print memory location n as an integer	n = 6
$	READ	read an integer into input buffer n times	n = 1
~	GETCHAR	read an ASCII character into input buffer n times	n = 1

Miscellaneous

Char	Name	Behavior
▦	SOLVE	insert moves to solve the cube from the current state at the current point in the code
■	PRINTCUBE	print the cube
¶	EVAL	read a line from stdin and insert it into the code

None of these commands take arguments.

Here are commands that have special behavior:

Loops

(and) make up loops.

	(...) will execute the code ... forever.

	(0...) will execute the code ... if the memory location 0 is nonzero, and loop while that is still

true.

	(...)0 will execute the code ..., and loop while memory location 0 is nonzero.

	(12...)34 will execute the code ... if either the memory location 1 or 2 is nonzero, and loop while

(memory location 1 or memory location 2) and (memory location 3 or memory location 4) are nonzero.

Conditionals

? is an if-nonzero conditional. ! is an if-zero conditional.

	?6. will execute . if memory location 6 is nonzero.

	!6. will execute . if memory location 6 is zero.

	?6{...} will execute ... if memory location 6 is nonzero.

	!6{...} will execute ... if memory location 6 is zero.

Note that if ? and ! when called implicitly are equivalent to ?6 and !6, respectively.

Functions

f calls a function. Unlike the rest of the commands in Cubically, f can be called with multiple-digit

numbers.

See functions for more information.

Functions

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

Cubically v3.1 has support for functions. A function definition starts with ⇒ (codepage 0x84) and ends in a newline (codepage 0x20). Functions do not have conventional names, such as foo or print. Instead they have integers for names. For example, this defines function 1 as R2L2:

⇒R2L2

This defines function 1 as R2L2, function 2 as U2D2, and function 3 as F2B2:

⇒R2L2
⇒U2D2
⇒F2B2

Functions are called with the f command. For example, this code executes R2L2U2D2F2B2:

⇒ R2L2
⇒ U2D2
⇒ F2B2
f1 f2 f3

Whitespace added for clarity.

Turning inner layers

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

RₙX, where n is a subscript number and X is a digit, means:

perform X clockwise right turns on the n'th layer inward from the right face

Examples:

Code: R₀2 (equivalent to R2)
Cube (3x3):
 005
 005
 005
111224333244
111224333244
111224333244
 550
 550
 550

Code: R₁2
Cube (3x3):
 050
 050
 050
111242333424
111242333424
111242333424
 505
 505
 505
Cube (4x4):
 0050
 0050
 0050
 0050
1111224233334244
1111224233334244
1111224233334244
1111224233334244
 5505
 5505
 5505
 5505

If n is larger than or equal to the size of the cube, it will act as a no-op. For example, R³2 on a 3x3x3 would be a no-op, but on a 4x4x4, it would turn the third face inward from the right face.

RⁿX, where n is a superscript number and X is a digit, means:

perform X clockwise turns on the m'th layer inward from the right face, where m is the value of memory location n.

So, if the notepad was 1, R⁶

2 would turn the middle face on a 3x3x3 twice.

Combining superscripts and subscripts will result in undefined behavior. Each version of the interpreter handles sub/superscript integration differently. You should never combine subscripts and superscripts in the same command so the behavior will never be defined.

For a fun example of superscripts and double-struck integers, try running this code with any cube size (providing the single-integer cube size as input):

$
: (R⁶𝟞𝟞 *1-1/1)6
: (U⁶𝟞𝟞 *1-1/1)6
: (F⁶𝟞𝟞 *1-1/1)6

Try it online! [https://tio.run/##Sy5NykxOzMmp/P9fhctKQSPoUeO2D3PnzwNhBS1DXUN9Q00zkEQoLgk3bBL//xuaAhEA]

Memory

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

Cubically has a unique memory structure. The memory is a Rubik's cube. Various commands perform operations on this cube, such as turning the right face clockwise by 90 degrees. Other commands perform operations on certain faces of the cube, like adding all values on the top face together and storing them on the notepad (see below).

The six faces of the cube are initialized with the numbers 0 through 5, like this:

 000
 000
 000
111222333444
111222333444
111222333444
 555
 555
 555

After performing a clockwise 90° turn on the right face, the memory cube would look like this:

 002
 002
 002
111225333044
111225333044
111225333044
 554
 554
 554

To make Cubically an (almost) usable language, there is one piece of fully read-writeable memory: the "notepad", which is a single-value register. This can store one value at a time. Performing a command on the nonexistent sixth face index will perform the command on the notepad. So, for example, +6 will add the notepad to itself.

Input is performed using the nonexistent seventh-indexed face. When input is read it is stored there and can be accessed by all commands that access face indexes. It is not changed until input is read again. It is initialized to zero.

The 8th indexed face contains a non-writeable boolean. It is always false if the cube is solved, and always true otherwise.

Memory locations

Memory location	Data	Visualizer color
0	top face sum	red
1	left face sum	blue
2	front face sum	purple
3	right face sum	green
4	back face sum	blue
5	bottom face sum	yellow
6	notepad	N/A
7	input buffer	N/A
8	cube is unsolved? (true/false)	N/A

Char	Name	Arg n	Implicit
R	RIGHT	rotate the right face 90°	

 clockwise n times|n = 1|
|L|LEFT|rotate the left face 90°

 clockwise n times|n = 1|
|U|UP|rotate the top face 90°

 clockwise n times|n = 1|
|D|DOWN|rotate the bottom face 90°

 clockwise n times|n = 1|
|F|FRONT|rotate the front face 90°

 clockwise n times|n = 1|
|B|BACK|rotate the back face 90°

 clockwise n times|n = 1|
|M|MID_L|rotate the middle layer inwards from the left face 90°

 clockwise n times|n = 1|
|E|MID_D|rotate the middle layer inwards from the bottom face 90°

 clockwise n times|n = 1|
|S|MID_F|rotate the middle layer inwards from the front face 90°

 clockwise n times|n = 1|
&	EXIT	exit if the value of memory location n is nonzero	n = 6	
+	ADD	notepad += memory location n	n = 6	
-	SUB	notepad -= memory location n	n = 6	USELESS IMPLICITLY
*	MUL	notepad *= memory location n	n = 6	
/	DIV	notepad /= memory location n	n = 6	USELESS IMPLICITLY
_	MOD	notepad %= memory location n	n = 6	USELESS IMPLICITLY
^	POW	notepad **= memory location n	n = 6	
=	EQ	notepad = (notepad == memory location n)	n = 7	
<	LT	notepad = (notepad < memory location n)	n = 7	PROBABLY
>	GT	notepad = (notepad > memory location n)	n = 7	PROBABLY
⊕	XOR	notepad = (notepad ⊕ memory location n)	n = 6	USELESS IMPLICITLY
«	LSHIFT	notepad <<= memory location n	n = 6	USELESS IMPLICITLY
»	RSHIFT	notepad >>= memory location n	n = 6	USELESS IMPLICITLY
·	AND	notepad &= memory location n	n = 6	USELESS IMPLICITLY
		OR	notepad	= memory location n
:	SET	notepad = memory location n	n = 7	
@	PUTCHAR	print memory location n as an ASCII character	n = 6	
%	PRINT	print memory location n as an integer	n = 6	
$	READ	read an integer into input buffer n times	n = 1	
~	GETCHAR	read an ASCII character into input buffer n times	n = 1	

Syntax

	Home

	Code page [https://cubically.github.io/docs/codepage]

	Commands

	Memory

	Functions

	Inner layers

	Syntax

Each character in Cubically source code is either a command or an argument. For example:

code: RL2UD23
does: R call command R without arguments
 L2 call command L with argument 2
 U call command U without arguments
 D23 call command D with argument 2, then argument 3

Each argument may only be a single-digit integer; multiple arguments call the command separately. As in the example, D23 does not call D with argument 23, it calls D with argument 2, then argument 3.

There is one exception to the above rule: the f command. Arguments stack up, so f23 will call f with 23. To call f with 2 and then 3 you would have to write f2f3.

For more information about arguments and commands, see commands.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Cubically's Documentation

_static/up.png

_static/up-pressed.png

